

Steel Dropin Internally Threaded Expansion Anchor

PRODUCT DESCRIPTION

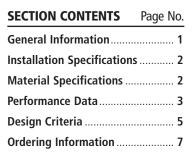
The Steel Dropin is an all-steel, machine bolt anchor available in carbon steel and two types of stainless steel. It can be used in solid concrete, hard stone, and solid block base materials. A coil thread version for forming applications is also available.

GENERAL APPLICATIONS AND USES

- Suspending Conduit
- Fire Sprinkler
- Cable Trays and Strut
- Concrete Formwork

- Pipe Supports
- Suspended Lighting

FEATURES AND BENEFITS


- Internally threaded anchor for easy removability and service work
- Flanged (lipped) version installs flush for easy inspection and standard embedment
- Smooth wall dropin can be installed flush mounted or below the base material surface
- Optionally available with a knurled body
- Coil thread version accepts coil rod and typically used for concrete formwork applications

TESTING, APPROVALS AND LISTINGS

Tested in accordance with ASTM 488 and AC01 criteria FM Global (Factory Mutual) - File No. J.I. OK4A9.AH (see ordering information) Underwriters Laboratory (UL Listed) - File No. EX1289 (N) (see ordering information) CalTrans listing for "Shell Mechanical Expansion Anchors"

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring and 05090-Metal Fastenings. Dropin anchors shall be Steel Dropin as supplied by Powers Fasteners, Inc., Brewster, NY.

Smooth Wall Dropin

Flange (Lipped) Dropin

THREAD VERSION

UNC Coarse Thread Coil Thread

ANCHOR MATERIALS

Zinc Plated Carbon Steel 303 Stainless Steel 316 Stainless Steel

ROD/ANCHOR SIZE RANGE (TYP.)

1/4" to 3/4" diameter UNC Coarse Thread 1/2" and 3/4" diameter Coil Thread

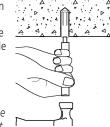
SUITABLE BASE MATERIALS

Normal-weight Concrete Structural Lightweight Concrete (uncracked base materials)

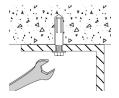
1

INSTALLATION SPECIFICATIONS

			Rod/A	nchor Dia	meter, a	d	
Anchor (Rod) Size	1/4"	3/8"	1/2"	1/2 " Coil Thread	5/8"	3/4"	3/4" Coil Thread
ANSI Drill Bit Size, d _{bit} (in.)	3/8	1/2	5/8	5/8	7/8	1	1
Maximum Tightening Torque, <i>T_{max} (</i> ftlbs.)	5	10	20	20	40	80	80
Thread Size (UNC)	1/4-20	3/8-16	1/2-13	1/2-6	5/8-11	3/4-10	3/4-4 ¹ /2
Thread Depth (in.)	7/16	5/8	13/16	13/16	1 3/16	1 3/8	1 3/8
Flange Size (in.)	7/16	9/16	45/64	-	-	-	-
Anchor Length <i>I, h_v</i> (in.)	1	1 9/16	2	2	2 1/2	3 3/16	3 3/16


Installation Procedure

Drill a hole into the base material to the depth of embedment required. The tolerances of the drill bit used must meet the requirements of ANSI


Standard B212.15. Do not over drill the hole unless the application calls for a subset anchor.

Blow the hole clean of dust and other materials. Insert the anchor into the hole and tap flush with surface. Using a Powers setting tool specifically, set the anchor by driving the tool with a sufficient

number of hammer blows until the shoulder of the tool is seated against the anchor. Anchor will not hold allowable loads required if shoulder of *Powers* setting tool does not seat against anchor.

If using a fixture, position it, insert bolt and tighten. Most overhead applications utilize threaded rod. Minimum thread engagement should be at least one anchor diameter.

(b)

d

h

d_{bit}

h_v,

Internal Plug

Nomenclature

- *d* = Diameter of anchor
- d_{bit} = Diameter of drill bit
- h = Base material thickness.
 - The minimum value of h should be $1.5 h_v$ or 3" min. (whichever is greater)
- h_v = Minimum embedment depth
- 1 = Overall length of anchor
- T_{max} = Maximum tightening torque

MATERIAL SPECIFICATIONS

Anchor Component	Carbon Steel	Type 303 Stainless Steel	Type 316 Stainless Steel		
Anchor Body	AISI 1008	Type 303 Stainless Steel	Type 316 Stainless Steel		
Plug	AISI 1018	Type 303 Stainless Steel	Type 316 Stainless Steel		
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5)				

Stainless steel anchor components are passivated.

PERFORMANCE DATA

Ultimate Load Capacities for Steel Dropin in Normal-Weight Concrete^{1,2,3}

Rod/Anchor	Minimum Embedment Depth	Minimum Concrete Compressive Strength (f'c)						
Diameter		2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)		
d	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	1	1,140	2,120	1,985	2,120	2,080	2,120	
(6.4)	(25.4)	(5.1)	(9.5)	(8.9)	(9.5)	(9.4)	(9.5)	
3/8	1 9/16	2,180	4,585	4,180	4,585	4,950	4,585	
(9.5)	(39.7)	(9.8)	(20.6)	(18.8)	(20.6)	(22.3)	(20.6)	
1/2	2	4,105	6,400	5,760	6,400	6,585	6,400	
(12.7)	(50.8)	(18.5)	(28.8)	(25.9)	(28.8)	(29.6)	(28.8)	
5/8	2 1/2	4,665	12,380	7,440	12,380	10,920	12,380	
(15.9)	(63.5)	(21.0)	(55.7)	(33.5)	(55.7)	(49.1)	(55.7)	
3/4	3 3/16	8,580	15,680	14,405	15,680	17,300	15,680	
(19.1)	(81.0)	(38.6)	(70.6)	(64.8)	(70.6)	(77.9)	(70.6)	

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. The values listed above are ultimate load capacities which should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety

factors of 10 or higher may be necessary depending on the application, such as life safety or overhead. 3. Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

Allowable Load Capacities for Steel Dropin in Normal-Weight Concrete^{1,2,3}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)						
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi	(41.4 MPa)	
d	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	1	285	530	495	530	520	530	
(6.4)	(25.4)	(1.3)	(2.4)	(2.2)	(2.4)	(2.3)	(2.4)	
3/8	1 9/16	545	1,145	1,045	1,145	1,240	1,145	
(9.5)	(39.7)	(2.5)	(5.2)	(4.7)	(5.2)	(5.6)	(5.2)	
1/2	2	1,025	1,600	1,440	1,600	1,645	1,600	
(12.7)	(50.8)	(4.6)	(7.2)	(6.5)	(7.2)	(7.4)	(7.2)	
5/8	2 1/2	1,165	3,095	1,860	3,095	2,730	3,095	
(15.9)	(63.5)	(5.2)	(13.9)	(8.4)	(13.9)	(12.3)	(13.9)	
3/4	3 3/16	2,145	3,920	3,600	3,920	4,325	3,920	
(19.1)	(81.0)	(9.7)	(17.6)	(16.2)	(17.6)	(19.5)	(17.6)	

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application,

such as life safety or overhead.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Ultimate Load Capacities for Steel Dropin in Structural Lightweight Concrete^{1,2,3}

Rod/Anchor	Minimum	Minimum Concrete Compressive Strength (f'c)						
Diameter	Embedment Depth	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi	(41.4 MPa)	
<i>d</i>	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
1/4	1	1,060	1,920	1,360	1,920	1,660	1,920	
(6.4)	(25.4)	(4.8)	(8.6)	(6.1)	(8.6)	(7.5)	(8.6)	
3/8	1 9/16	3,040	4,120	3,780	4,120	4,520	4,120	
(9.5)	(39.7)	(13.7)	(18.5)	(17.0)	(18.5)	(20.3)	(18.5)	
1/2	2	4,240	5,680	4,840	5,680	5,460	5,680	
(12.7)	(50.8)	(19.1)	(25.6)	(21.8)	(25.6)	(24.6)	(25.6)	
5/8	2 1/2	6,860	9,640	7,840	9,640	8,840	9,640	
(15.9)	(63.5)	(30.9)	(43.4)	(35.3)	(43.4)	(39.8)	(43.4)	
3/4	3 3/16	10,280	16,460	11,700	16,460	13,120	16,460	
(19.1)	(81.0)	(46.3)	(74.1)	(52.7)	(74.1)	(59.0)	(74.1)	

1. Tabulated load values are applicable to carbon and stainless steel anchors.

2. The values listed above are ultimate load capacities which should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

Linear interpolation may be used to determine ultimate loads for intermediate compressive strengths.

PERFORMANCE DATA

Allowable Load Capacities for Steel Dropin in Structural Lightweight Concrete^{1,2,3}

Rod/Anchor	Minimum		Minimu	m Concrete Co	npressive Stren	igth (f'_c)	
Diameter	Embedment Depth	3,000 psi (20.7 MPa)		4,000 psi	4,000 psi (27.6 MPa)		(34.5 MPa)
d	<i>h</i> _v	Tension	Shear	Tension	Shear	Tension	Shear
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.	Ibs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
1/4	1	265	480	340	480	415	480
(6.4)	(25.4)	(1.2)	(2.2)	(1.5)	(2.2)	(1.9)	(2.2)
3/8	1 9/16	760	1,030	945	1,030	1,130	1,030
(9.5)	(39.7)	(3.4)	(4.6)	(4.3)	(4.6)	(5.1)	(4.6)
1/2	2	1,060	1,420	1,210	1,420	1,365	1,420
(12.7)	(50.8)	(4.8)	(6.4)	(5.4)	(6.4)	(6.1)	(6.4)
5/8	2 1/2	1,715	2,410	1,960	2,410	2,210	2,410
(15.9)	(63.5)	(7.7)	(10.8)	(8.8)	(10.8)	(9.9)	(10.8)
3/4	3 3/16	2,570	4,115	2,925	4,115	3,280	4,115
(19.1)	(81.0)	(11.6)	(18.5)	(13.2)	(18.5)	(14.8)	(18.5)

1. Tabulated load values are applicable to carbon and stainless steel anchors.

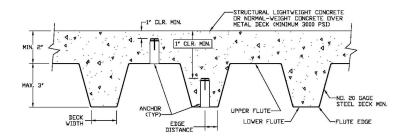
www.powers.com

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application,

such as life safety or overhead.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Ultimate and Allowable Load Capacities for Steel Dropin Installed Through Metal Deck into Structural Lightweight Concrete^{1,2,3,4,5}


		Lightweight Concrete over minimum 20 Gage Metal Deck, f'c ≥ 3,000 (20.7 MPa)							
Rod/Anchor Diameter	Minimum Embedment Depth	Minimum 1-1/2" Wide Deck				Mi	inimum 4-1/	/2" Wide De	eck
Diameter		Ultimat	te Load	Allowab	ole Load	Ultimat	te Load	Allowat	ole Load
d in. (mm)	h _ν in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4 (6.4)	1 (25.4)	400 (1.8)	2,040 (9.2)	100 (0.4)	510 (2.3)	760 (3.4)	2,040 (9.2)	190 (0.8)	510 (2.3)
3/8 (9.5)	1 9/16 (39.7)	600 (2.7)	2,760 (12.3)	150 (0.7)	690 (3.1)	960 (4.3)	2,760 (12.3)	240 (1.1)	690 (3.1)
1/2 (12.7)	2 (50.8)	-	-	-	-	2,740 (12.3)	5,560 (25.0)	685 (3.1)	1,390 (6.3)

1. The values listed above are ultimate and allowable load capacities for carbon steel anchors installed in sand-lightweight concrete.

2. Allowable load capacities are calculated using a safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Tabulated load values are for anchors installed in the center of the flute. Spacing distances shall be in accordance with the spacing table for lightweight concrete listed in the Design Criteria. 4. Flute edge distance equals one-half the minimum deck width.

5. Anchors are permitted to be installed in the lower or upper flute of the metal deck provided the proper installation procedures are maintained.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{N_u}{N_n}\right)^{\frac{5}{3}} + \left(\frac{V_u}{V_n}\right)^{\frac{5}{3}} \le 1$$
 or $\left(\frac{N_u}{N_n}\right) + \left(\frac{V_u}{V_n}\right) \le 1$

Where: N_u = Applied Service Tension Load N_n = Allowable Tension Load

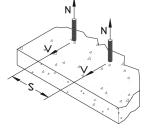
 V_u = Applied Service Shear Load

 V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances

Anchor Installed in Normal-Weight Concrete							
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor		
Spacing (s)	Tension and Shear	$s_{cr} = 3.0 h_V$	$F_{N_S} = F_{V_S} = 1.0$	$s_{min} = 1.5 h_V$	$F_{N_S} = F_{V_S} = 0.50$		
Edge Distance (c)	Tension	$c_{cr} = 14d$	<i>F_{NC}</i> = 1.0	c _{min} = 7d	$F_{N_{C}} = 0.90$		
Luge Distance (c)	Shear	$c_{cr} = 14d$	$F_{V_{C}} = 1.0$	c _{min} = 7d	$F_{V_{C}} = 0.50$		

Anchor Installed in Lightweight Concrete							
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor		
Spacing (s)	Tension and Shear	$S_{cr} = 3.0 h_V$	$F_{N_S} = F_{V_S} = 1.0$	$s_{min} = 1.5 h_V$	$F_{N_S} = F_{V_S} = 0.50$		
Edge Distance (c)	Tension	$c_{cr} = 14d$	$F_{N_{C}} = 1.0$	c _{min} = 7 d	$F_{N_{C}} = 0.80$		
Luge Distance (c)	Shear	$C_{cr} = 14d$	$F_{V_C} = 1.0$	c _{min} = 7 d	$F_{V_C} = 0.50$		

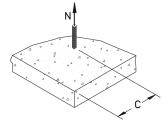


DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

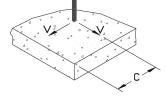
Load Adjustment Factors for Normal-Weight and Lightweight Concrete

	Spacing, Tension (<i>F_{NS}</i>) & Shear (<i>F_{VS}</i>)									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
h _v (in.)	1	1 1/2	2	2 1/2	3				
S _{cr}	(in.)	3	4 1/2	6	7 1/2	9				
Smi	n (in.)	1 1/2	2 1/4	3	3 3/4	4 1/2				
	1 1/2	0.50								
<u>,</u>	2 1/4	0.75	0.50							
(inches)	3	1.00	0.67	0.50						
nc	3 3/4		0.83	0.63	0.50					
s (i	4		0.89	0.67	0.53					
ð	4 1/2		1.000	0.75	0.60	0.50				
cin	5			0.83	0.67	0.56				
pacing,	6			1.00	0.80	0.67				
S	7 1/2				1.00	0.83				
	9					1.00				

Notes: For anchors loaded in tension and shear, the critical spacing (s_{cr}) is equal to 3 embedment depths $(3h_v)$ at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 1.5 embedment depths $(1.5h_v)$ at which the anchor achieves 50% of load.



	Edge Distance, Tension (F _{NC}) (Normal-Weight concrete only)										
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4					
Ccr	(in.)	3 1/2	5 1/4	7	8 3/4	10 1/2					
Cmi	n (in.)	1 3/4	2 5/8	3 1/2	4 3/8	5 1/4					
	1 3/4	0.90									
(s	2	0.91									
ا چ	2 5/8	0.95	0.90								
(inches)	3	0.97	0.91								
υ	3 1/2	1.00	0.93	0.90							
je,	4 3/8		0.97	0.93	0.90						
Distance,	5 1/4		1.00	0.95	0.92	0.90					
st	6			0.97	0.94	0.91					
	7			1.00	0.96	0.93					
Edge	8				0.98	0.95					
E	8 3/4				1.00	0.97					
	10 1/2					1.00					


Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14*d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7*d*) at which the anchor achieves 90% of load for normal-weight concrete and 80% of load for lightweight concrete.

	Edge Distance, Tension (F _{NC}) (Lightweight concrete only)									
Dia	ı. (in.)	1/4	3/8	1/2	5/8	3/4				
Ccr	(in.)	3 1/2	5 1/4	7	8 3/4	10 1/2				
Cmi	in (in.)	1 3/4	2 5/8	3 1/2	4 3/8	5 1/4				
	1 3/4	0.80								
(S)	2	0.83								
(inches)	2 5/8	0.90	0.80							
Ĕ.	3	0.94	0.83							
υ	3 1/2	1.00	0.87	0.80						
e,	4 3/8		0.93	0.85	0.80					
Distance,	5 1/4		1.00	0.90	0.84	0.80				
ist.	6			0.94	0.87	0.83				
	7			1.00	0.92	0.87				
Edge	8				0.97	0.90				
B	8 3/4				1.00	0.93				
1	10 1/2					1.00				

	Edge Distance, Shear (<i>F_{VC}</i>)									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
Ccr	(in.)	3 1/2	5 1/4	7	8 3/4	10 1/2				
Cmi	<i>n</i> (in.)	1 3/4	2 5/8	3 1/2	4 3/8	5 1/4				
	1 3/4	0.50								
	2	0.57								
(S	2 5/8	0.75	0.50							
(inches)	3	0.86	0.57							
Ŀ.	3 1/2	1.00	0.67	0.50						
υ	4 3/8		0.83	0.63	0.50					
l ej	5		0.95	0.71	0.57					
aŭ	5 1/4		1.00	0.75	0.60	0.50				
Distance,	6			0.86	0.69	0.57				
	7			1.00	0.80	0.67				
Edge	8				0.91	0.76				
E	8 3/4				1.00	0.83				
	10					0.95				
	10 1/2					1.00				

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14 anchor diameters (14*d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 7 anchor diameters (7*d*) at which the anchor achieves 50% of load.

6

(b)

ORDERING INFORMATION

Carbon Steel Smooth Wall Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6304	1/4"	1"	7/16"	100	1,000	2	-
6306	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6308	1/2 "	2"	13/16"	50	250	12	FM/UL
6320	5/8"	2 1/2"	1 3/16"	25	125	32	FM/UL
6312	3/4"	3 3/16"	1 3/8"	10	50	48	FM/UL

Carbon Steel Knurled Wall Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6340	1/4"	1"	7/16"	100	1,000	2	-
6342	3/8"	1 9/16"	5/8"	50	500	6	-
6344	1/2"	2"	13/16"	50	250	12	-

Carbon Steel Flanged Dropin (Lipped)

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6324	1/4"	1"	7/16"	100	1,000	2	-
6326	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6328	1/2 "	2"	13/16"	50	250	12	FM/UL

Type 303 Stainless Steel Dropin

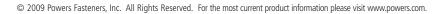
Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6204	1/4"	1"	7/16"	100	1,000	2	-
6206	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6208	1/2 "	2"	13/16"	50	250	12	FM/UL
6210	5/8"	2 1/2"	1 3/16"	25	125	32	FM/UL
6212	3/4"	3 3/16"	1 3/8"	10	50	48	FM/UL

Type 316 Stainless Steel Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6224	1/4"	1"	7/16"	100	1,000	2	-
6226	3/8"	1 9/16"	5/8"	50	500	6	FM/UL
6228	1/2 "	2"	13/16"	50	250	12	FM/UL
6230	5/8"	2 1/2"	1 3/16"	25	125	32	FM/UL
6232	3/4"	3 3/16"	1 3/8"	10	50	48	FM/UL

Carbon Steel Coil Thread Dropin

Cat. No.	Rod/Anchor Size	Overall Length	Thread Depth	Std. Box	Std. Carton	Wt./100	FM or UL
6330	1/2"	2"	13/16"	50	250	12	-
6332	3/4"	3 3/16"	1 3/8"	10	50	48	-


Setting Tools for Steel Dropin

Cat. No.	6305	6307	6309	6311	6313
Rod/Anchor Size	1/4"	3/8"	1/2 "	5/8″	3/4″
Pin Length	39/64"	61/64"	1 3/16"	1 5/16"	1 61/64"

